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Cerenkov Radiation at Finite Temperature

Zden¢k Kopecky!

Received February 5, 1993

A power formula for Cerenkov radiation at finite temperature is derived in the
framework of the generalized finite-temperature Cutkosky rules. Spins 1/2 and
0 are considered.

1. INTRODUCTION

Reactions rate for quantum processes taking place in a heat bath in
thermal equilibrium have been actively studied the past few years. Compu-
tations of discontinuities at finite temperature and their physical interpreta-
tions in the framework of the imaginary-time finite-temperature field theory
(IT FTFT) were done by Weldon (1983).

The generalization of Cutkosky rules in the real-time FTFT (the
circled diagrams algorithm) was found in Kobes and Semenoff (1986).
Recently, Niégawa (1990) and Ashida er al. (1991) showed that any
Kobes—Semenoff diagram can be cut. Therefore the total discontinuity at
finite temperature is a collection of different reaction rates. We use the
result of this theory for concrete physical situations.

In this article we derive a spectral formula for finite-temperature
Cerenkov radiation, i.e., the energy loss of a charged particle moving faster
than the speed of light in the medium. We discuss quantum particles (spin
1/2 and 0) and we consider that the medium is filled by equilibrium photon
radiation (finite-temperature situation).

The energy loss per unit time of the particle is defined by (Tzytovich,
1962)

dE
a7 fdco oP(w)

= fdw @{[Np(®) + 1]T'* () — Np(@)I' " ()} (D
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Here P(w) is the spectral power distribution, and I' " (w) and "~ (w) are the
rates for emission and absorption of one photon with energy w, respec-
tively. Nz(w) = 1/[exp(fw) — 1] is the Bose—Einstein distribution function,
and f is the inverse temperature.

2. FINITE-TEMPERATURE DECAY RATE

The starting point for our calculation is the decay forward amplitude
(Niégawa, 1990; Ashida et al., 1991):

Fu(B) = 52 Z 2
¥,, is the off-diagonal on-shell RT FTFT self-energy (see Fig. 1).

There is a detailed discussion of the amplitude in Niégawa (1990) and
Ashida et al. (1991). We assume the first-level diagram. There are propaga-
tors in Fig. 1, where the circled diagram convention is used (Kobes and
Semenoff, 1986; Niégawa, 1990; Ashida et al., 1991):

(a) Photon:

iD (k) = 2nu[ O(k®) + NB(|k0|)][ —g# + (1 —n 2" 8(n¥(k%)? — (k)?)
(3)

where #* = (1, 0) and » is the index of refraction of the medium and g is its
magnetic permeability.

(b) Charged particles: We assume nonthermal propagators, which
corresponds to single charged particle moving in the medium:

Spin 1/2:

iS* (k) = 2n(m + yk)O(k°)6(k> — m?) 4)
Spin 0:

iG* (k) = 2nOk)S(k? — m?) (5)

k0

Fig. 1
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The decay rate (2) is equal (in the case of spin one-half we take
the average over the particle wave function) to the sum of
[ do T*(w)[Ng(w) + 1] and | dw T'™(0)Ng(w) (Niégawa, 1990; Ashida er
al., 1991). We shall modify (2) by insertion of the energy loss of the particle
into the self-energy diagram (2) to obtain formula (1):

In case of spin 1/2

iS*(p) — (E —p)iS*(p) (6)
and in case of spin 0
iG*(p) = (E — p%iG*(p) (N

where E denotes energy of the charged particle and E — p? is its energy loss
after one process of radiation.

3. SPIN ONE-HALF

The total spin-1/2-particle energy loss —dE/dt, equation (1), using (2),
(6), will be

—-idltg = J:O do wP(w)
1 d*k
) 52"<"Z f Gny S - ")V“fDﬁ“v(k>> ()

{-> denotes the average over spin states Y ,#(p,o)...u(p,c), where
u(p, o) is the particle wave function normalized by the condition (1) = 2ns,
where m is the mass of the particle. Equation (8) takes the form, after
substitution (3), (4)

dE é*u [ d% 0 o
& " 2E | 2n)t T(p, Dk [OK°) + Np(k)]O(p° — k%
x 8(n*(k®)? — (k))o(p — k)> — m?) &)

Containing all spin operations in T(p, k),
T(p, k) = y"m +Wp — kM — g + (1 —n 2 1y"> (10)
After spin reduction in (10) we obtain

2
T k)= =2m+21—n-E 0wz a4y
m m m
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We make standard operations for the é-function in (4):

A(p°~k°+ k)+5(P —k°—E,_\)
8(p — K = %) = T
201,072 2 5(k0 — |k|/n) ok + lk|/n)
(k) — () = =7 3
Ek=|l;—|’ E,_=[m*+(p-Kk?7"” (12)

After substution of (12) in (9) and transforming the momentum measure
d*k to a more convenient form, we get

dE do d(cos(6))
Tdr e’ j SmE @T(p, k)
x {(cos(8) — cos(0,))[1 + Nz(w)]
— 8(cos(0) + cos(0,))Ngz(w)} (13)

where

cos(0,) = 1+ (nz};l)w/ZE, 05(6,) = 1— (nz;vl)a)/2E
(14)
kp

L I _ ke
v = w==", cos(f) = K[ o

Now we can complete the calculations. Substitution of T'(w, cos(f), E)
from (11) into (13) and trivial integration over d(cos(d)) give the final
result for the energy loss:

dE (=
== P
o deco (w)
= oot - L1 2m 1) - ey
T o< 84 T TE a2V
2
x[NB(w)+1]-—-f do oSty
feos(8,)) < 1 4n
e 12w =2 = 1) v, (@) 15
x nzvz En 4E2n ) slw ( )

where cos(f,) and cos(,) are defined in (14) and w > 0.
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4. SPIN ZERO

In the case of spin 0 we substitute the propagator (7) for the charged
particle and the standard vertex form for scalar field theory in the self-
energy (2). Then the total energy loss —dE/dt is

dE ©
—E-—J; dw wP(w)
2E (2%)4 uv
After substitution of (3) and (5) in (16), we get
dE [*
———— P
7 J; do wP(w)
ezﬂ 1 w » c02
== _ o had _1 R 2_1 5
J;os(ﬂe)<1 do o 41’[ U{I nZUZ[l +E(n ) 8E2 (n ) :]}
e
x [N, (w)+1]—J do w—"0v
g lcos(8,) < 1 4r
A1 2oy - Z -2 | (a7
nZp? E h 8 E2 n sl

where cos(6,) and cos(f,) are defined in (14) and w > 0.

5. CLASSICAL LIMIT

In both cases spin 1/2 and 0 the spectral function P(w) has in the
classical limit w/E > 0 the same form:

2 1
w>1  Po) =%‘u<1 —n202>

nv < 1; P(w)=0

(18)

Therefore in the classical case there is no temperature-dependent contribu-
tion to the radiation as found in Kirzhnitz (1990).

6. DISCUSSION

We have used an elegant method of the generalized finite-temperature
Cutkosky rules to derive a power formula for the Cerenkov radiation at
finite temperature. Our results in the case of spin 1/2 are similar to
Tzytovich (1962), where the old one-component real-time formalism was
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used. We are also in accordance with the result of Kirzhnitz (1990), where
the general method for calculations of energy loss is derived from the
fluctuation-dissipation theorem.

The result of Pardy (1989), according to our calculations, is the sum of
the absorption and radiation power in the spectral formula.
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