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(2erenkov Radiation at Finite Temperature 
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A power formula for (~erenkov radiation at finite temperature is derived in the 
framework of the generalized finite-temperature Cutkosky rules. Spins 1/2 and 
0 are considered. 

1. INTRODUCTION 

Reactions rate for quantum processes taking place in a heat bath in 
thermal equilibrium have been actively studied the past few years. Compu- 
tations of discontinuities at finite temperature and their physical interpreta- 
tions in the framework of the imaginary-time finite-temperature field theory 
(IT FTFT) were done by Weldon (1983). 

The generalization of Cutkosky rules in the real-time FTFT (the 
circled diagrams algorithm) was found in Kobes and Semenoff (1986). 
Recently, Ni~gawa (1990) and Ashida et al. (1991) showed that any 
Kobes-Semenoff diagram can be cut. Therefore the total discontinuity at 
finite temperature is a collection of different reaction rates. We use the 
result of this theory for concrete physical situations. 

In this article we derive a spectral formula for finite-temperature 
(~erenkov radiation, i.e., the energy loss of a charged particle moving faster 
than the speed of light in the medium. We discuss quantum particles (spin 
1/2 and 0) and we consider that the medium is filled by equilibrium photon 
radiation (finite-temperature situation). 

The energy loss per unit time of the particle is defined by (Tzytovich, 
1962) 

dE = f d~o coP(co) 
dt J 

= fdr r162 + 1]l-'+(co) NB(co) r -  (co) } (1) I 
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Here P(co) is the spectral power distribution, and F+(~o) and F - ( ~ )  are the 
rates for emission and absorption of one photon with energy ~o, respec- 
tively. NR(co) = 1/[exp(flw) -- 1] is the Bose-Einstein distribution function, 
and fl is the inverse temperature. 

2. FINITE-TEMPERATURE DECAY RATE 

The starting point for our calculation is the decay forward amplitude 
(Ni6gawa, 1990; Ashida et al., 1991): 

- i  
Fd(E) = ~ E21 (2) 

Y~21 is the off-diagonal on-shell RT FTFT self-energy (see Fig. 1). 
There is a detailed discussion of the amplitude in Ni6gawa (1990) and 

Ashida et  al. (1991).  We assume the first-level diagram. There are propaga- 
tors in Fig. 1, where the circled diagram convention is used (Kobes and 
Semenoff, 1986; Ni6gawa, 1990; Ashida et al., 1991): 

(a) Photon: 

iD +"v(k) = 2n#[| ~ + NB(Ik~ _g.V + ( 1 - n -2)t/"t/v] 6(nZ(kO)2 _ (k)2) 

(3) 

where t/~ = (1, 0) and n is the index of  refraction of  the medium and # is its 
magnetic permeability. 

(b) Charged particles: We assume nontherrnal propagators, which 
corresponds to single charged particle moving in the medium: 

Spin 1/2: 

i S + ( k )  = 27z(m + 7 k ) O ( k ~  2 - m 2) (4) 
Spin 0: 

iG +(k)  = 2rcO(k~ 2 - -  m 2 )  (5) 

P P-k P 
Fig. 1 
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The decay rate (2) is equal (in the case of spin one-half we take 
the average over the particle wave function) to the sum of 
S do  F+(~o)[NB(~0) + 1] and S do  F - ( o ) N n ( o )  (Ni6gawa, 1990; Ashida et 
al., 1991). We shall modify (2) by insertion of  the energy loss of the particle 
into the self-energy diagram (2) to obtain formula (1): 

In case of  spin 1/2 

iS + (p) ~ (E - p~ + (p) (6) 

and in case of  spin 0 

iG +(p) ~ (E - p~ +(p) (7) 

where E denotes energy of  the charged particle and E - p 0  is its energy loss 
after one process of  radiation. 

3. SPIN ONE-HALF 

The total spin-1/2-particle energy loss -dE /d t ,  equation (1), using (2), 
(6), will be 

dE f ~  = do oP(o)  
Yi o 

( - )  denotes the average over spin states ~ , ~ ( p ,  cO. . .  u(p, a), where 
u(p, a) is the particle wave function normalized by the condition (1 )  = 2m, 
where m is the mass of the particle. Equation (8) takes the form, after 
substitution (3), (4) 

dE e2# f d4k 
- d--t- = 2 E  J ( z r c )  4 T(p, k)k~174 ~ + N~,(k)]| ~  k ~ 

x 3(n2(k~ 2 - (k)Z)6((p - k) z - m 2) (9) 

Containing all spin operations in T(p, k), 

T(p, k) = (yU[m + y(p -- k)][ -guy + (1 -- n -2)r/ut/~ly v) (10) 

After spin reduction in (10) we obtain 

E 2 _ kO E T(p ,k)  = - 2 m  +2(1  - n - 2 )  - ( 3 - n  -E) + ( 1  + n  -E) kp ( l l )  
m m m 
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We make standard operations for the g-function in (4): 

6( (p  - k)  2 - rn 2) - 6 ( p ~  - k ~  + Ep _ k) + 6(P ~ -- k ~  -- Ep - k) 
2E~_~ 

6(n2(kO): - (k) :) - 6(k  ~ - Iki/n) + 6(k~ + [kl/n) 
2Ek 2Ek 

Ek= Ik[-, g. - k = [m2 + (P - k)2] '/2 
n 

(12) 

After substution of (12) in (9) and transforming the momentum measure 
d4k to a more convenient form, we get 

dE ~ dco d(cos(0)) 
- - d 7  = e21"t d ~ coT(p,  k) 

• { ~ ( c o s ( 0 )  - COS(0e))[1 -[- NB(O))]  

- 6(cos(0) + cos(0~))Ns(co) } 

where 

(13) 

1 + (n 2 - 1 )co /2E  1 - (n 2 - 1 )co /2E  
COS(0e) - -  , C O S ( 0 a )  - -  

HV nU 

v =  IP-j co= Ik/, cos(0)= k p 
E '  n [kl " IP[ 

(14) 

Now we can complete the calculations. Substitution of T(co, cos(0), E) 
from (11) into (13) and trivial integration over d(cos(0)) give the final 
result for the energy loss: 

d E  = d o  coP(co) 
dt 

=(os<0~)<o~ " e2# f" 

Ie " e2P 
• [NB (09) + I I -- aco co - ~  v 

oS(0a) [ < 1 

• 1 -n-G~v~ l - ~ ( n  ~ -  l) - 4 - ~ ( n  4 -  1) N~(~) 

where CO8(0e) and cos(0a) are defined in (14) and ~o > 0. 

o2 ]} 

(15) 
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4. SPIN ZERO 

In the case of spin 0 we substitute the propagator (7) for the charged 
particle and the standard vertex form for scalar field theory in the self- 
energy (2). Then the total energy loss -dE~dr is 

dE = de) e)P(e)) 
dt 

1 2 f' d4k o 
= w e  J(--~)4 k (2p-k)"(2p-k)ViG+(p-k) iOL(k)  (16) 

After substitution of (3) and (5) in (16), we get 

dE fo ~ dt de) e)P(e)) 

=~os(0~) < 1 de)e)e4--~l~z v{ 1 -  ~l [ 0) 2 ('02 1} 1 + x ( n  - 1) -~E-5(n 2 -  I) 2 

fe  " e2'tt x [NB(e)) + 1] -- ae) e) ~ v 
os(Oa) I < 1 

x 1 -n-~v ~ l - X ( .  2 -  11 - ~ ( n  2 -  1) 2 U~(o) (17) 

where cos(Of) and cos(Oa) are defined in (14) and e) > O. 

5. CLASSICAL LIMIT 

In both cases spin 1/2 and 0 the spectral function P(e)) has in the 
classical limit e)/E ~-, 0 the same form: 

n v > l :  P(~)=-~ve2# ( -n -~v2 )  - - 1  1 
(18) nv < 1: P(e)) = 0 

Therefore in the classical case there is no temperature-dependent contribu- 
tion to the radiation as found in Kirzhnitz (1990). 

6. DISCUSSION 

We have used an elegant method of the generalized finite-temperature 
Cutkosky rules to derive a power formula for the (~erenkov radiation at 
finite temperature. Our results in the case of spin 1/2 are similar to 
Tzytovich (1962), where the old one-component real-time formalism was 
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used. We are also in accordance with the result of Kirzhnitz (1990), where 
the general method for calculations of energy loss is derived from the 
fluctuation-dissipation theorem. 

The result of Pardy (1989), according to our calculations, is the sum of 
the absorption and radiation power in the spectral formula. 
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